
New Beings

A series of
articles on AI vol.2

1. AutoGPT
Christopher Lacy-Hulbert

Founder and CTO at Zenitech

Cristian Tintas
Software Developer at Zenitech

3. SuperAGI
Cristian Tintas
Software Developer at Zenitec

2. Copilot
Cristian Tintas

Software Developer at Zenitech

4. Tabnine
Cristian Tintas

Software Developer at Zenitec

AutoGPT ... 3
Christopher Lacy-Hulbert

Founder and CTO at Zenitech

Cristian Tintas
Software Developer at Zenitec Tabnine .. 13

Cristian Tintas
Software Developer at Zenitec

SuperAGI .. 11

Cristian Tintas
Software Developer at Zenitec

Copilot .. 7
Cristian Tintas
Software Developer at Zenitec

New Beings: AI in Software
Development
Zenitech has partnered with law firm, Stevens & Bolton, to create New Beings - a series of articles ex-

ploring how AI can, and will, be used in software development.

Join us for the journey, as we examine a range of issues, including the legal issues surrounding artificial
intelligence, the practicalities of using AI to aid software development, how AI tools can assist with cod-

ing, and the issues around security and testing.

C
O

N
T

E
N

T
S

What is AutoGPT?

AutoGPT is an open-source AI tool that leverages the GPT-4 or GPT-3.5
APIs from OpenAI to accomplish user-defined objectives expressed in
natural language. It allows users to define tasks by breaking them down
into smaller components and autonomously utilises various resources
in a cyclic process to achieve those objectives

AutoGPT
Christopher Lacy-Hulbert

Founder and CTO at Zenitech

Cristian Tintas
Software Developer at Zenitech

1

3 4

Features and resources

According to the AutoGPT web site, Auto-GPT’s unique strength lies in its self-
sufficiency. By utilising the capabilities of ChatGPT, it can take control of tasks
and projects, removing the need for continuous user inputs. In doing so, Auto-GPT
removes workload by eliminating the need to constantly provide follow-up ideas or
responses.

AutoGPT has the following key features:

• Internet access for searches and information gathering
• Long-term and short-term memory management
• GPT-4 instances for text generation
• Access to popular websites and platforms
• File storage and summarisation with GPT-3.5
• Extensibility with Plugins [GitHub - Plugins]

To install AutoGPT, you can clone the GitHub repository from the following link:
GitHub. Alternatively, you can download the repository as a zip file. The installation
guide and further setup instructions can be found in the repository [GitHub - AutoGPT
Guide]. There are also Docker images available, which allow quick set-up of AutoGPT
based on existing builds with all dependencies installed and running.

There is also an implementation available with LangChain primitives (LLMs,VectorStores,
Embeddings, Tools).

Setup

After cloning the repository, you need to update the “.env” file with your own
configurations and API keys. The required keys include the OpenAI API key and the
GITHUB_API_KEY for authorisation. Additionally, you need to specify your GITHUB_
USERNAME and configure other APIs as needed. The installation guide provides
detailed instructions on setting up AutoGPT [GitHub - AutoGPT Guide].

In principle, AutoGPT can be used for various coding tasks, such as executing code,
analysing code, improving code, generating documentation, debugging, searching
Google, web scraping, searching files, and GitHub cloning. It offers a wide range of
features and functionalities to assist in coding and debugging processes [GitHub -
AutoGPT Guide][GitHub - Plugins]. However, in our experiments, it was very limited
and struggled to handle even moderately complex tasks. For very simple use-cases,
working on a single file with <50 lines of Python, it was able to autonomously provide
bug fixes, documentation and reformatting. Anything more involved than that will
send the automaton into infinite loops with no meaningful actions performed.

Concerns about AutoGPT

Some potential concerns with AutoGPT include its experimental nature, which means
it may not be a polished application or product. It might not perform well in complex,
real-world business scenarios, and it can be quite expensive to run, so monitoring API
key limits with OpenAI is important [GitHub - Plugins].

We will be looking at the legal position around AutoGPT in New beings: Legal issues
and AI.

Alternatives to AutoGPT

There are several alternatives to AutoGPT available in the market, such as other
prompt engineering tools or AI-based coding assistants, some similar are BabyAGI

[GitHub - BabyAGI] and SuperAGI [GitHub - SuperAGI].

Each alternative may have its own unique features, capabilities, and user experiences,
so it’s important to explore different options and choose the one that best fits your
requirements.

Key Takeaways and conclusions

It’s important to remember that AutoGPT is an experimental application and may
have limitations in certain scenarios. It’s recommended to follow the provided
documentation and setup instructions for the best experience.

I spent a week giving the AI agent several scenarios, even creating a fully
functional service with specific requirements, but unfortunately AutoGPT did not
provide even a starting point.

5 6

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT/releases/latest
https://github.com/RimaBuilds/AutoGPT-handbook
http://GitHub
http://GitHub
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
http://GitHub - BabyAGI
http://GitHub - SuperAGI

What is Copilot?

Copilot is an AI pair programmer developed by
GitHub that helps developers write code fast-
er and with less effort. It uses OpenAI’s Codex, a
generative pre-trained language model, to provide
context-aware code suggestions and completions
based on comments and existing code. Copilot is
available as an extension for various integrated de-

velopment environments (IDEs), including Visual
Studio Code, Visual Studio, Neovim, and the Jet-
Brains suite of IDEs [GitHub - Copilot].

The whole point of GitHub Copilot is having an
AI assistant suggest to you what to write. There is
the upcoming Copilot X that will have integrated
ChatGPT functionalities and much more, but the
current version is “just” a helper.

The name Copilot is exactly about this. In “pair pro-

gramming”, there are two people working on the
same computer: the pilot, the developer actually
having the responsibility of writing the code; and
the copilot, there to suggest, advise, and check
that everything is being developed correctly.
While you are typing, Copilot keeps sending your
code to GitHub servers, and when it has a sugges-

tion, it provides it to you by writing it in light grey.
If you like what it is proposing, you can press TAB
to approve it, or you can keep writing to ignore it,
waiting for the next suggestion.

Copilot
Cristian Tintas
Software Developer at Zenitec

2

7 8

https://github.com/features/copilot

Features and resources

Copilot has the following key features:

• Code Suggestions: Copilot suggests individual lines and whole functions in
real-time, drawing context from comments and code.

• Context-Awareness: The AI model analyses the code you are writing and
provides relevant suggestions based on the current context.

• Multiple Language Support: Copilot supports various programming languages,
including C#, C++, Python, and more [Microsoft - GitHub Copilot extension for
Visual Studio].

It also has a GitHub Extension.

Copilot is available as an extension for Visual Studio Code, Visual Studio, Neovim,
and the JetBrains suite of IDEs. Developers can install the extension from the
respective marketplace or plugin repository for their preferred IDE.

Setup

To use Copilot, developers need to install the Copilot extension for their chosen
IDE. The installation process may vary depending on the IDE being used. Once
installed, Copilot integrates with the IDE and provides code suggestions and
completions as developers write code [Microsoft - GitHub Copilot extension for
Visual Studio].

Real-Life Action

In real-life scenarios, developers can leverage Copilot to speed up their coding
process and reduce the time spent on repetitive tasks. Copilot analyses the
code being written and suggests relevant completions, snippets, or even entire
functions. It provides assistance throughout the development process, helping
developers write code more efficiently and accurately.

Sometimes, it happens, and when Copilot suggests like the next 10 lines of code
and they are all correct, it feels like magic.

Concerns about Copilot

While Copilot can be a valuable tool for developers, there are a few concerns to
consider.

Copilot’s suggestions are not perfect and may require careful review and testing.
It doesn’t guarantee flawless code and may generate code that doesn’t work or
make sense in certain situations.

Copilot also has limited context and may not utilise helpful functions defined
elsewhere in a project or even within the same file. It may also suggest old or
deprecated usage of libraries and languages.

We will be looking at the legal position around Copilot in XX

Alternatives to Copilot
While Copilot is a popular AI pair programmer, there are alternatives available in
the market. Some notable alternatives include:

• Tabnine: An AI-powered code completion tool that provides intelligent
suggestions for multiple programming languages.

• Kite: A code completion tool that uses machine learning models to offer
contextually relevant code suggestions.

• Codota: A code completion tool that leverages machine learning to provide
code recommendations based on millions of open-source code examples.

9

Key Takeaways and conclusions

1. Copilot is an AI pair programmer that assists developers in writing code
faster and with less effort. It provides context-aware code suggestions and
completions based on comments and existing code.

2. Copilot supports multiple programming languages and is available as an
extension for popular IDEs.

3. While Copilot can be helpful, developers should carefully review and test the
suggested code. Copilot may have limitations in utilising external functions
and may suggest outdated code practices.

4. There are alternative AI-powered code completion tools available, such as
Tabnine, Kite, and Codota.

Copilot is a valuable tool for developers, offering AI-powered code suggestions
and completions. It can enhance productivity and reduce repetitive coding
tasks. However, it’s essential to review and test the suggested code for quality
assurance. Developers should also consider alternative code completion tools
based on their specific needs and preferences.

10

https://learn.microsoft.com/en-us/visualstudio/ide/visual-studio-github-copilot-extension?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/ide/visual-studio-github-copilot-extension?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/ide/visual-studio-github-copilot-extension?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/ide/visual-studio-github-copilot-extension?view=vs-2022

11 12

What is SuperAGI?

SuperAGI is an open-source platform that provides infrastructure for building
autonomous AI agents. It allows developers to spawn, deploy, and manage AI
agents with ease.

With SuperAGI, developers can run multiple agents concurrently, extend agent
capabilities using various tools, and benefit from a user-friendly graphical interface
for agent management.

Features and resources

SuperAGI has the following key features:

• Provision, spawn, and deploy autonomous AI agents.
• Extend agent capabilities with a library of tools.
• Run concurrent agents seamlessly.
• Graphical User Interface (GUI) for easy agent management.
• Action Console for interacting with agents.
• Multi-Modal Agents for customisation using

different models.
• Performance telemetry and memory storage for agents.
• Looping detection heuristics and resource manager [GitHub

- SuperAGI].

To download the SuperAGI repository, you can clone
it using the command git clone https://github.com/
TransformerOptimus/SuperAGI.git in your terminal or
download it directly from the GitHub page in zip format.

The setup instructions and configuration details can be
found in the repository’s README file. You will need to
create a config.yaml file and provide your unique OpenAI API
Key, Google key, and Custom search engine ID to access the
required APIs [GitHub - SuperAGI].

Setup

To set up SuperAGI, follow these steps:

• Clone the SuperAGI repository or download it as a zip file.
• Navigate to the SuperAGI directory using the command

cd SuperAGI.
• Create a copy of config_template.yaml and name it

 config.yaml.
• Enter your unique OpenAI API Key, Google key, and Custom

search engine ID in the config.yaml file without any quotes
or spaces.

• Ensure Docker is installed on your system.
• Run the command docker-compose up --build in the

SuperAGI directory.
• Open your browser and go to http://localhost:3000 to

access SuperAGI.
• Note: You can change the port it’s running on by modifying

the docker-compose.yml file [GitHub - SuperAGI].

Real-Life Action

SuperAGI enables developers to build, manage, and
run autonomous AI agents. It facilitates tasks such as
provisioning agents, extending their capabilities using
various tools, running agents concurrently, and providing a
graphical interface for agent management. Developers can
use SuperAGI to create AI agents tailored to specific tasks
and interact with them through the Action Consol.

However, I did not manage to use it to its claimed potential. It
ran for more than half a day and was still in its original state.

Alternatives to SuperAGI
There are various alternatives to SuperAGI available for
building autonomous AI agents, such as OpenAI’s GPT-3
platform, Microsoft’s Azure Cognitive Services, and Google
Cloud AI. Each alternative offers its own set of features,
tools, and capabilities, so it’s important to evaluate them
based on specific requirements and use cases.

SuperAGI
Cristian Tintas
Software Developer at Zenitec

Key Takeaways and conclusions

1. SuperAGI appears to be a powerful open-source platform for building and managing autonomous AI agents. Its features,
tools, and concurrent agent capabilities make it a promising solution for developers working with AI agent systems.

2. SuperAGI provides developers with a comprehensive framework for building and managing autonomous AI agents.
3. With its features like concurrent agent support, extendable capabilities, and a user-friendly GUI, SuperAGI simplifies the

development and deployment process.

However, it’s important to keep in mind that SuperAGI is under active development, and as with any software project, it may
have some issues or limitations.

Developers should review the documentation, contribute to the community, and consider their specific requirements when
deciding whether to use SuperAGI for their AI agent projects.

3

https://github.com/TransformerOptimus/SuperAGI
https://github.com/TransformerOptimus/SuperAGI
https://github.com/TransformerOptimus/SuperAGI
https://github.com/TransformerOptimus/SuperAGI

Tabnine
Cristian Tintas
Software Developer at Zenitec

13 14

What is Tabnine?

Tabnine is an AI assistant for software developers that provides AI-powered code
completions and suggestions to enhance productivity and accelerate coding
workflows. It uses advanced machine learning models trained on open-source
code with permissive licenses to offer intelligent code suggestions across various
programming languages and major integrated development environments (IDEs)
[Tabnine Get Started].

Key Takeaways and conclusions

1. Tabnine is an AI assistant that provides developers with AI-powered code
completions and suggestions. It supports multiple programming languages and
integrates with popular IDEs.

2. Tabnine prioritises privacy and security, ensuring that user code remains private
and is not used to train models other than private code models.

3. Developers should consider the accuracy and relevance of suggestions when
using Tabnine and review and test the suggested code accordingly.

Tabnine is a valuable AI assistant for developers, offering AI-powered code
completions and suggestions to enhance productivity. It supports various
programming languages and major IDEs, allowing developers to benefit from its
intelligent code suggestions. However, developers should be cautious of taking
Tabnine’s suggestions, and test their accuracy and relevance

Features and resources

Tabnine has the following key features:

• AI Completions: Tabnine offers AI-driven code
completions that assist developers in writing code faster
and more accurately.

• Language and IDE Support: Tabnine supports multiple
programming languages, including JavaScript, Java,
Python, TypeScript, PHP, C++, Go, Rust, and more. It is
compatible with popular IDEs like Visual Studio Code and
WebStorm [Tabnine Get Started].

• Privacy and Security: Tabnine ensures the privacy and
security of developers’ code. It never stores, or shares
any user code, and actions that involve sharing code
with Tabnine servers require explicit opt-in. Tabnine’s
generative AI only uses open-source code with permissive
licenses for training models [Tabnine].

It provides resources, such as a trust centre, which gives
users information about the privacy and security practices
employed by Tabnine, ensuring developers that their code
remains private and protected [Tabnine].

Tabnine also offers comprehensive documentation and
resources to help developers get started with using Tabnine
effectively in their coding workflows.

Setup

Developers can install the Tabnine extension for their
preferred integrated development environment (IDE).
The installation process may vary depending on the IDE
being used.

Once installed, Tabnine integrates with the IDE and provides
AI-powered code completions as developers write code
[Tabnine Get Started].

Real-Life Action

In real-life scenarios, Tabnine acts as an AI assistant for
developers, providing intelligent code completions and
suggestions. It analyses the code being written and offers
relevant suggestions, helping developers write code faster
and reduce manual effort.

When used in combination with Copilot it can really enhance
developer productivity and streamline the coding process.

Concerns about Tabnine

Although Tabnine strives to provide accurate code
suggestions, the quality and relevance of suggestions may
vary depending on the context and codebase. Developers
should review and test the suggested code for their specific
use cases.

We will be looking at the legal position around Tabnine in
New beings: Legal issues and AI.

Alternatives to Tabnine
While Tabnine is a popular AI code completion tool, there
are alternative options available in the market. Some notable
alternatives include:

• Kite: An AI-powered code completion tool that offers
contextually relevant code suggestions based on machine
learning models.

• Codota: A code completion tool that uses machine
learning to provide intelligent code recommendations
based on millions of open-source code examples.

• DeepCode: A code review tool that uses AI to analyse
code and provides suggestions for code improvements
and bug fixes.

https://www.tabnine.com/get
https://www.tabnine.com/get
https://www.tabnine.com/
https://www.tabnine.com/
https://www.tabnine.com/get

Look out for Edition 3 of
the New Beings AI eBook

Coming up:
Security analysis of AI-
generated code

Integrating accessibility
testing automation
solutions to an existing
project using AI

How AI-assisted unit
testing boosts reliability
of web apps and speeds
up development cycles

AI Futures

Copyright Zenitech 2023. All rights reserved

