
New Beings

A series of
articles on AI

1. Introduction
to New Beings
Christopher Lacy-Hulbert
Founder and CTO at Zenitech

3. Demystification:
a glossary of AI
terms
Christopher Lacy-Hulbert
Founder and CTO at Zenitech

2. Legal issues
and AI

Tom Lingard
Partner at Stevens & Bolton

4. Accelerating
iOS development

with AI tools
Péter Sebestyén Krassay

Expert iOS Developer at Zenitech

C
O

N
T

E
N

T
S

Introduction to New Beings:
a series of articles on AI ... 3
Christopher Lacy-Hulbert
Founder and CTO at Zenitech

Accelerating iOS development with AI tools:
a practical exploration with ChatGPT
and Copilot X ... 13
Péter Sebestyén Krassay
Expert iOS Developer at Zenitech

Introduction .. 13
The fictional ‘client’: SZIA ... 15
Setting Up Development Environments 15
Generating Networking Layer with AI Tools 17
Conclusion ... 30

Demystification:
a glossary of AI terms ... 12
Christopher Lacy-Hulbert
Founder and CTO at Zenitech

Legal issues and AI ... 5
Tom Lingard
Partner at Stevens & Bolton

AI and intellectual property rights 7
Liability and accountability .. 7
Privacy and data protection .. 7
Discrimination and bias .. 7
Governance and regulation ... 8
Application to Development and Testing 9
Conclusions ... 10

New Beings:
AI in Software
Development
Zenitech has partnered with law firm, Stevens
& Bolton, to create New Beings - a series of

articles exploring how AI can, and will, be used
in software development.

Join us for the journey, as we examine a range
of issues, including the legal issues surrounding
artificial intelligence, the practicalities of using
AI to aid software development, how AI tools
can assist with coding, and the issues around
security and testing.

Welcome to our New Beings series, covering the
rapidly emerging topic of artificial intelligence in
the software development domain. Here at Zen-

itech, a substantial amount of our work consists
of high-quality software development for global
brands - this work is often at a significant scale and
of a mission-critical nature.

Led by an intense curiosity to understand the im-

plications of artificial intelligence in our work, we
engaged in a series of detailed investigations cov-

ering a broad spectrum of topics.

Through these investigations, Zenitech, and oth-

er companies active in software development, can
benefit from a greater understanding of the capa-

bilities of these tools, and how we might use them
to advance our work and increase the competi-

tiveness of ourselves and our clients.

We’ll be sharing this series of articles over the next
few weeks, so if this is an area of interest to you,
please follow us and join in the discussion.

Introduction to
New Beings:
a series of
articles on AI

The series will cover the technical aspects of ar-
tificial intelligence in software development and
consider the legal implications of working with AI,
such as data, privacy, copyright infringement, in-

tellectual property, and information security. Our
goal is for this series to be used as a guide for soft-

ware developers in general.

To be clear, this article series is not about the
broader topic of business enablement through AI.
However, we will be publishing tangible use-cases
in the near future to illustrate how any business
can or should use LLMs (Large Language Models)
and other AI technology to enhance their business
offering and remain competitive. These considera-

tions are outside the immediate scope of software
development. If this is an area of interest to you,
please get in touch and we can help you shape
your thoughts.

Our very best technical talent worked on this se-

ries, in collaboration with our legal partners at Ste-

vens & Bolton.

Christopher Lacy-Hulbert
Founder and CTO at Zenitech

1

3 4

Disclaimer: Artificial intelligence is a complex and
rapidly evolving technology and law - in this arti-

cle, I summarise some key legal issues that arise
from using AI.

It is not intended to constitute legal advice and is
for discussion purposes only.

This article is part of the ‘New Beings’ series of ar-
ticles from Zenitech and Stevens & Bolton, exam-

ining the practicalities, issues and possibilities of
using AI in development.
Today, we examine some of the legal issues sur-
rounding AI and its use in development.

Legal
issues
and AI
Tom Lingard
Partner at Stevens & Bolton

2

5 6

AI and intellectual

property rights

There are two main points when
considering intellectual property (IP) in
the context of AI - protection
and ownership.

The question of ownership of IP
rights in AI generated content is not
straightforward and, at the moment,
varies between jurisdictions. In some
countries material generated by AI is
not eligible for copyright protection
due to the lack of human authorship.

In the UK, ‘computer-generated works’
are eligible for copyright protection and
the author/owner of such computer-
generated works is held to be the
person by whom the arrangements
necessary for the creation of the
work are undertaken. However, the
legislation dates from 1988 and does
not necessarily translate well to modern,
complex AI platforms.

Infringement and use of
third-party IP

All AI systems need to be trained and
learn from data. In some cases, that
data is specialised/unique and provided
by the parties developing the AI (e.g.
medical data sets). However, in others,
it is obtained from publicly available
(but not necessarily freely usable) data
– including unsophisticated scraping of
the web.

Again, there is a divergence of how this is
addressed in different jurisdictions. The
UK Government recently put its plans
to introduce a data mining exemption
to copyright infringement on hold, but
on 29 June 2023 the UK Intellectual
Property Office announced that work
had started to develop a voluntary
code of practice for copyright and AI;
and that If the code of practice is not
adopted, or agreement is not reached,
legislation could be considered.

Rights holders across various
jurisdictions are already bringing claims
for infringement, including the claim
brought by Getty Images against Stable
Diffusion.

Of particular relevance to software
developers is the extent to which an AI
may have been trained on third-party
or open-source code. Is it putting it into
the code it is generating for you? Is the
correct licence included?

Thaler v Comptroller General

Stephen Thaler created the artificial
intelligence known as DABUS (Device
for the Autonomous Bootstrapping
of Unified Sentience). The AI went on
to create two new products - a food
container that it constructed using
fractal geometry (which would facilitate
rapid reheating of food) and a flashing
beacon that could be used for
emergencies.

Thaler has been attempting to patent
the products made by DABUS, but
various courts around the world have
ruled against him - saying that Thaler
cannot patent something that wasn’t
created by a human. The final appeal
against the UK ruling was heard by the
UK Supreme Court in March.

Whilst the case focuses on ownership
and inventorship in the field of patents,
the implications of the judgement could
be huge. For example, what does this
mean for the things you create for
companies that use AI as part of the
development process?

Liability and accountability

Then there’s the question of liability.
Some questions that need to be
considered include:

• If an AI is generating faulty/infringing
code, is that because it was trained
on bad code in the first place, or due
to how it is generating the results?

• Is the data scientist or developer
liable, or the company executives
who signed off on its deployment?

• Can you even tell where the problem
originated?

• If AI-generated code that is licensed
out to another entity causes harm to
an end user, would the licensor and/
or licensee be liable?

• Who will compensate the injured
parties? What position might the
parties’ respective insurers adopt?

• What would be the applicable
standard of care that would apply if
AI is making the decisions that cause
harm?

Privacy and data protection
AI requires access to large amounts of
data to function, which raises concerns
about the privacy and security of
personal information. AI should comply
with privacy and data protection
laws to ensure that personal data is
processed lawfully.

A number of the typical AI
characteristics may appear to be at odds
with the underlying principles of data
protection law, including the principles
of transparency, data minimisation and
accountability:

• Transparency – it can be difficult for
organisations to explain AI systems to
individuals because of their inherent
complexity.

• Data minimisation – are you striking
the balance between data minimisation
and statistical accuracy?

• Accountability – can you demonstrate
compliance with GDPR and other
data protection principles?

• Cross-border considerations – where
is the data being processed? Can this
be identified? Is it all UK-based?

Discrimination and bias
AI systems can perpetuate and amplify
existing biases and prejudices, which
could result in discriminatory practices.
Addressing these issues requires a legal
framework that addresses issues of
fairness and transparency.

The Equality and Human Rights
Commission (EHRC) has drawn
attention to the fact that there is a real
risk posed by the use of AI, with biases
within the systems often stemming
from its use of training data.

Imbalanced training data:

• Imbalanced training data can lead to
discriminatory results. For example,
if men are over-represented in the
training data, women are statistically
‘less important’ - this may impact
the results of AI (e.g. by suggesting
men are more likely to repay loans,
if more men are represented).

• These issues will apply to any
population under-represented in
the training data. For example, if a
facial recognition model is trained
on a disproportionate number of
faces belonging to a particular
ethnicity and gender, it will perform
better when recognising individuals
in that group and worse on others.

• It may be possible to balance it out
by adding or removing data about
under/ overrepresented subsets of
the population.

Training data could reflect past
discrimination:

• For example, if, in the past, loan
applications from women were
rejected more frequently than those
from men due to prejudice, then any
model based on such training data is
likely to reproduce the same pattern
of discrimination.

• You could either modify the data,
change the learning process, or
modify the model after training.

Governance and regulation
The rapid development of AI requires
an adequate legal framework to
regulate its use, development, and
deployment. The regulatory framework
should balance innovation and safety
while also promoting ethical practices.
It’s a situation that’s evolving rapidly,
with the UK government playing a
particularly high-profile role.

AI is ever-changing and quickly
adapting, so regulation is often trying
to catch up. This means regulation
can often fall behind the AI, and it
can become unclear which regulations
apply, whether new regulations will
come into force etc.

UK - Current legislation

Currently, in the UK, AI is governed by
numerous different bits of legislation
(data protection law, Equality Act
2010, product safety laws, consumer
rights law, tort law, financial services
regulation etc.), so it can be difficult
to ascertain what is applicable and
whether you are abiding by it.

White paper on regulating AI

The government recently (29 March
2023) released a white paper discussing
the regulation of AI and proposing a
change in regulatory approach.

It acknowledged industry concerns
“that conflicting or uncoordinated
requirements from regulators
create unnecessary burdens and
that regulatory gaps may leave risks
unmitigated, harming public trust and
slowing AI adoption.”.

It proposes a principles-based
framework for regulators to interpret
and apply to AI within their remits. The
proposed principles are pro-innovation,
proportionate, trustworthy, adaptable,
clear and collaborative.

A strength of this approach is that
regulators would still be able to exercise
discretion and expert judgement
regarding the relevance of each
principle to their individual domains.
Initially, the principles will be issued
by the government on a non-statutory
basis and applied by regulators within
their remits.

Following a period of non-statutory
implementation, and when
parliamentary time allows, the
government anticipates that it will want
to strengthen and clarify regulators’
mandates by introducing a new duty
requiring them to have due regard to
the principles.

The Government has also just published
the Terms of Reference for a working
group the role of which will include
“identifying, developing and codifying
good practice on the use of copyright,
performance and database material in
relation to AI, including data mining”.

G7 leaders are calling for some
international standards around artificial
intelligence (generative
AI in particular).

In summary: the law is playing catch
up with the development of AI. There
are hefty issues to consider in terms
of ownership, bias, copyright and IP
protection, and regulation, and clarity
will come from legal test cases in the
coming months and years.

7

https://www.gov.uk/guidance/the-governments-code-of-practice-on-copyright-and-ai
https://www.reuters.com/world/g7-calls-adoption-international-technical-standards-ai-2023-05-20/

Application to
Development and Testing
The wider issue of Governance and
Regulation – while doubtless important
– is less applicable to the specific uses
of AI for software development that
we have been looking at as part of this
project. Similarly, discrimination, bias
and the processing of personal data
within AI systems has the potential to
have hugely negative effects on society
as the use of such tools become more
widespread — but again is beyond the
scope of this work.

For the purposes of this project, we
have therefore focussed on the issues
of IP ownership/infringement and legal
liability by reference to the terms of
use of the main tools explored by the
team: Chat GPT, AutoGPT, Copilot and
Tabnine. We have also looked at the
terms of use for some of the QA and
testing tools that the team have been
trialling.

Chat GPT, AutoGPT, CoPilot and
Tabnine

The first thing to note is that there are
variations in approach, even across
just these three tools. This is not a
problem per se, but a developer that
uses multiple tools in a single project
is potentially introducing a high degree
of legal complexity should any issue or
claims arise.

For example even as regards
jurisdiction:

• AutoGPT makes use of OpenAI’s GPT-
4 language model and both it and
Chat GPT are covered by OpenAI’s
terms. Those terms are governed by
Californian law and require mandatory
arbitration to resolve disputes arising
from them;

• Copilot’s terms are governed by the
law of British Columbia, Canada and
again require arbitration of disputes
under Canadian rules; and

• Tabnine’s terms are governed by Israeli
law and users are quired to submit to
the jurisdiction of the courts of Tel Aviv.

Liability

The overarching theme is that, as
one would expect, the tools all go to
huge lengths to exclude any liability
whatsoever arising from their use and/
or cap that liability at a low level.

In the case of OpenAI and Copilot,
the terms state that the services are
provided “AS IS”, which is language
recognised under US law as excluding
all implied warranties through which

the law might otherwise protect a
buyer. All three sets of terms also
include broad exclusions of liability and
indemnities in favour of the provider
for loss and damage arising from
customers’ use.

As an experimental open-source
application that makes use of (and
requires a subscription to) GPT-4,
AutoGPT’s GitHub repository includes
an overlaid disclaimer, which states
that it:

is an experimental application and is provided “as-is” without any warranty,
express or implied. By using this software, you agree to assume all risks

associated with its use, including but not limited to data loss, system failure, or
any other issues that may arise.

In addition:

• OpenAI’s terms limit its liability to
the greater of: the amount the user
paid for the service that gave rise
to the claim during the 12 months
before the liability arose; or one
hundred dollars ($100); and

• Copilot’s total aggregate liability
from any and all claims is limited
to the total amount of fees paid
by the customer in the 12 months
immediately preceding the date the
cause of action first arose.

• In all three cases the terms seek to
impose a 12-month limitation on
bringing claims arising from their
use; and OpenAI and CoPilot also
seek to exclude users from joining
class actions relating to the services.

Tabnine is the odd one out insofar as it
does give specific reassurance to users
concerning the open source software
that is uses to deliver code, saying:

We note that as part of the development of the Services provided by Codotoa,
Tabnine uses certain “Free and Open Source Software ‘’ or “FOSS”. In that

respect Tabnine represents that its use of such FOSS is in compliance with the
licence terms thereof (however Tabnine makes no other representations and/or

warranties in connection with such FOSS.

Intellectual Property

All the platforms are protective of
their own technologies, expressly
prohibiting the use of scraping/
spidering technology to “steal” their
underlying data. However, they take
slightly differing approaches to their
outputs and to what they will do with
data uploaded by users.

OpenAI assigns all its right title and
interest in its outputs to the user.
However, it also makes clear that
an output may not be unique and,

therefore, that a user does not acquire
exclusive rights to particular outputs or
solutions;

Copilot retains all rights but instead
grants the user a licence to outputs. It
also states that customer grants Copilot:

• an irrevocable, perpetual licence to
use or incorporate into the service
any suggestions, enhancement
requests, recommendations or other
feedback provided by customer;
and

• a worldwide, royalty-free, non-
exclusive, irrevocable licence to

reproduce, process and display the
customer’s data in an aggregated
and anonymized format for Copilot’s
internal business purposes, including
without limitation to develop and
improve the service, the system and
Copilot’s other products and services.

Tabnine also grants users a licence to
outputs, rather than assigning rights.
However, it does provide reassurance
that if users give Tabnine permission
to access their code for analysis and
“Tailor Made Services”:

such code shall be used by Tabnine solely in order to adjust and upgrade the standard Services to provide you, and you only, with
the Tailor Made Services. No other users shall be granted with any access to the Tailor Made Services provided to you, …[and]…,
any code provided by you to Tabnine shall not be stored and/or used by Tabnine, and (d) for the avoidance of doubt, except with
respect to creating the Tailor Made Services, Tabnine shall not be granted any intellectual property rights in the code shared by

you which was provided solely for the limited use by Tabnine for creating the Tailor Made Services

QA Testing Tools

In addition to these development
tools we have also looked at
some of the QA and testing
tools used by the team, namely:

• Mabl
• Perfecto
• Functionize

• Virtuoso
• Applitools
• Appvance

These tools are, to an extent,
different to Chat GPT,
AutoGPT, Copilot and Tabnine
as their focus is more on
testing code than creating
it. However, from a legal
perspective their user terms or
similar. They seek to prevent
users from reproducing
the tools or using them for
unauthorised purposes, and
seek as far as possible to limit
liability arising from their use.

They do, though, generally
recognise the distinction
between: (|) users’ own data
that they upload into the tool;
and (||) the results/reports
that the tools produce.

Conclusions

In summary, therefore, the legal relationship between AI platforms and users is
generally one-sided and (even from the traditionally risk-averse point of view of a
lawyer) the advice is best summed up as “proceed with caution”.

Of the development tools we have looked at Tabnine seems to have the clearest
and best-drafted terms for software development. It also appears to have the lowest
risk-profile, making a selling point of the fact it uses properly licensed open-source
software as its sole training source.

There have already been some very high-profile cases in this area, most notably
the ongoing US claim involving Copilot in the US, in which Microsoft and GitHub
are defending allegations that Copilot infringes the copyright in a large number of
publicly-available source-code repositories on which it has been trained. That claim
may, from a US perspective at least, provide some helpful clarity as to how the
courts might treat some of these issues, but in the meantime the complexity, cost
and potential jurisdictional issues involved in such claims will make it difficult for any
single developer to seek redress should liability arise from their use of AI platforms.

That being the case developers should take what steps they can to control their
“downstream” risk. In particular, it is usual for clients to require warranties around the
code that is delivered to them – including as to authorship and whether it includes
open-source code.

Using AI tools can almost immediately cut across those warranties, and it is interesting
to note that OpenAI’s terms specifically state that it is a breach to represent that
output from the service was human-generated when it is not. It would be advisable,
therefore, for developers to look at the terms of their customer contracts to be clear
about the warranties they are offering and, if they have not done so already, make
specific allowance for the use of AI platforms.

As regards testing tools, the risks seem on the whole slightly lower, but it is still really
important to be clear about which tools you are using and to check that their terms
are compatible with your use.

Clearly these are incredible tools, but they do pose some very specific risks for
developers. And just as the technical members of Zenitech’s team have highlighted
the need to review carefully the outputs from AI platforms before putting them into
use, the same is doubtless true from a legal perspective.

9 10

https://www.mabl.com/tos
https://www.perfecto.io/ terms-service
https://assets.functionize.com/Functionize-Terms-of-Service.pdf
https://www.virtuoso.qa/terms-of-service
https://applitools.com/tos-20200720/
https://appvance.ai/terms
https://www.theregister.com/2023/07/01/microsoft_github_copilot/
https://www.theregister.com/2023/07/01/microsoft_github_copilot/

Demystification:
a glossary of AI terms

Christopher Lacy-Hulbert
Founder and CTO at Zenitech

In our ‘New Beings’ series, we explore the vast and complex area of AI as it relates to
Software Development. There are so many new words and terms used in relation to AI,

so we’ve put together a handy glossary of the most common-used terms.

I hope it’s helpful.

Generative AI

Large Language Models (LLMs

GPT (Generative Pretrained Transformer)

BERT (Bidirectional Encoder
Representations from Transformers)

Transfer Learning

Fine-tuning

Transformer Models

Generative Adversarial Networks
(GANs)

Autoencoders

Variational Autoencoders (VAEs)

Recurrent Neural Networks (RNNs)

A subfield of artificial intelligence focused on creating new content or predictions.
It uses algorithms and models, often based on machine learning techniques, to
generate outputs such as text, images, music, and more.

These are AI models trained on vast amounts of text data. They predict or generate
new text based on input by learning patterns in the data they’ve been trained on.
Examples include GPT-3, GPT-4, BERT, etc.

A type of LLM developed by OpenAI. It’s trained to predict the next word in a
sentence and can generate human-like text based on a given prompt.

A model developed by Google that’s designed to understand the context of words
in a sentence by looking at the words before and after it.

A machine learning method where a pre-trained model is adapted for a
second, related task. This approach saves resources as it requires less data and
computational time.

The process of tweaking a pre-trained model for a specific task. It involves adjusting
the model’s parameters to optimise its performance on the new task.

A type of deep learning model introduced in the paper “Attention is All You Need”.
It utilises self-attention mechanisms and has been highly influential in NLP tasks.

A type of generative model consisting of two neural networks – a generator and a
discriminator. The generator creates new data samples, such as images, by learning
to mimic the distribution of the training data, while the discriminator learns to
differentiate between real and fake samples. The two networks are trained
together in a competitive process until the generator can create realistic samples
that can fool the discriminator.

Autoencoders are a type of neural network that are used for unsupervised learning.
They are designed to encode input data into a lower-dimensional representation
and then decode it back to its original form. Autoencoders can be used for tasks
such as image compression, denoising, and image generation.

VAEs are a type of autoencoder that uses a probabilistic approach to generate
new data samples. They learn a probabilistic distribution over the latent space and
use it to generate new samples that are similar to the training data.

Transformers

RNNs are a type of neural network that are designed to process sequential data,
such as text or speech. They use feedback loops to process the input data one step
at a time and maintain a memory of the previous steps. RNNs can be used for tasks
such as language translation, text generation, and speech recognition.

Transformers are a type of neural network architecture that are designed to
process sequences of data, such as text or speech. They use attention mechanisms
to focus on the relevant parts of the input sequence and process them in parallel,
making them more efficient than RNNs for long sequences.

3

11 12

Accelerating iOS
development with
AI tools: a practical
exploration with
ChatGPT and
Copilot X
Péter Sebestyén Krassay
Expert iOS Developer at Zenitech

This article is part of the ‘New Beings’ series of articles from
Zenitech and Stevens & Bolton, examining the practicalities,

issues and possibilities of using AI in development.

Today, we explore the practicalities of iOS development using AI.

Introduction

In this article, we delve into the coding phase, focusing on how AI
tools, specifically ChatGPT and Copilot X, can accelerate iOS de-

velopment. Having previously looked at the legal issues relating to
AI, we can now explore how to harness the capabilities of these AI
tools in building iOS applications.

Tools

We’ll focus on two AI tools in this article.

1. ChatGPT (GPT-4): A state-of-the-art Large
Language Model (LLM) by OpenAI, ChatGPT
is built on the GPT-4 architecture, specialis-

ing in generating human-like text and synthe-

sising code.

2. Copilot X: An AI code assistant based on
a custom LLM, Copilot X provides con-

text-aware code suggestions, optimising
coding workflows. (Currently in private beta.)

The legal issues around the use of these tools are
the subject of a dedicated article in this series,
New Beings, Legal Issues and AI.

Overview of the task

For this test of AI tools, our iOS developers at
Zenitech worked on an application for a fictional
airport. The task was to create a feature-rich iOS
app that integrates multiple screens, network
communication to fetch real-time data, and local
persistence for user-specific information.

Through the course of development, we em-

ployed ChatGPT and Copilot X to expedite the
coding process by creating Data Transfer Objects
(DTOs), fetching flight data, and generating rele-

vant UI code.

13 14

4

The fictional ‘client’: SZIA

The South-Zubony International Airport (SZIA), an imaginary
airport located in Hungary, needs an application to improve
the travel experience of passengers. The core purpose
is to provide users with an intuitive and efficient way to
access real-time flight information, airport news, maps,
and a platform for submitting complaints. The scope of the
application includes network communication for real-time
data retrieval, local data persistence, multiple views for
different features, and user interactions.

Functionalities: Arrivals, Departures, Complaints,
Favourites

The application requires the following primary functionalities:

• Arrivals: This screen showcases a list of arriving flights
with the option for users to refresh the data.

• Departures: Similar to arrivals, this screen displays a list of
departing flights.

• Complaints: Users can submit complaints through a form,
which can include a text description and an optional
image attachment.

• Favourites: Users have the option to mark specific flights
as favourites, which are then saved locally on the device
for easy access.

These functionalities aim to provide a comprehensive travel
tool to passengers, helping them stay informed and engaged
throughout their journey.

Backend Integration

The backend system for the SZIA application is a REST
API that provides endpoints for retrieving real-time flight
information, news, and submitting complaints. The backend
is accessible at https://szia-backend.autsoft.hu/api/, and
is crucial in supplying the data needed for the application’s
features. The endpoints include

- GET /Airlines,
- POST /Complaints,
- GET /Flights, and
- GET /News.

Introduction to the OpenAPI descriptor

An OpenAPI descriptor is provided for the backend, which
is a specification document written in YAML or JSON
(interchangeable). This descriptor provides a standardised
description of the API’s endpoints, requests, responses, and
other components.

By using this OpenAPI descriptor, developers can understand
the API’s capabilities and generate client libraries, server
stubs, API documentation, and other code artefacts.
This proves to be particularly beneficial when integrating
ChatGPT and Copilot X, as it allows these AI tools to have a
better understanding of the API structure and generate more
accurate code.

Setting Up Development Environments

ChatGPT 4

Integrating ChatGPT into your development workflow is a
relatively straightforward process. ChatGPT doesn’t require
any special software installation; all you need is a functional
web browser.

• ChatGPT is accessible through web browsers and doesn’t
necessitate a specific development environment.

• Create an account on OpenAI’s platform if you don’t have
one already.

• Subscribe to ChatGPT Plus, which costs $20 per month.
ChatGPT Plus is a subscription plan that offers a host of
benefits including general access to ChatGPT even during
peak times, faster response times, and priority access to
new features and improvements (i.e. GPT-4).

Once you have subscribed to ChatGPT Plus, you can start
using it (through your browser) to assist in generating code
snippets, brainstorming ideas, or answering queries related
to (iOS) development.

Copilot X

You need to fulfil certain prerequisites to harness the
capabilities of Copilot X within Visual Studio Code - Insiders:

• Ensure you have a GitHub account. (If not, you can create
one here.)

• Subscribe to GitHub Copilot, which is priced at $100 per
year. You can subscribe to GitHub Copilot here.

• Request access to the Copilot X private beta by visiting this
page. It’s important to note that access to Copilot X is granted
on an invitation basis, and you may have to wait for approval.

• Once you have access to Copilot X, download and install
Visual Studio Code - Insiders edition from this link.

• After installing Visual Studio Code - Insiders, launch the
application and go to the Extensions view by clicking on
the Extensions icon in the Activity Bar on the side of the
window.

• Search for “GitHub Copilot Nightly” and install the
extension. This extension is the nightly build of GitHub
Copilot and includes the most recent features.

• Additionally, search for “GitHub Copilot Chat” (Preview)
and install this extension as well. This extension allows you
to chat with Copilot X and get real-time coding assistance.

• Activate these extensions by login into your GitHub
account.

• After installing the extensions and successfully activating
them, you will notice a new icon appearing in the sidebar.
This is where you can engage in a chat with Copilot X, ask
questions, and receive code suggestions.

With Copilot X integrated into Visual Studio Code - Insiders,
you are now equipped with a powerful AI assistant that can
offer intelligent code suggestions and accelerate your (iOS)
development process.

Copilot for Xcode - A Worthy Mention

While our experimentation primarily revolves around the
integration of ChatGPT and Copilot X in Visual Studio
Code - Insiders, there is another tool worth mentioning for
the Xcode environment. Copilot for Xcode is an innovative
extension that integrates the functionalities of ChatGPT and
GitHub Copilot directly into Xcode.

This open-source extension operates by making API calls
to offer real-time, AI-driven code suggestions. Kudos to the
developers for actively contributing to this project!

However, it’s important to note that Copilot for Xcode uses
API keys for its functionality. In the context of this article,
integrating it wasn’t feasible as I didn’t have access to GPT-
4 via API, and Copilot X also employs a different language
model compared to Copilot, which would have made the
comparison less equitable.

But Copilot for Xcode is definitely worth exploring. Even if
just for experimentation, integrating it into Xcode could offer
valuable insights into how AI-driven code suggestions can
augment the development process.

While Copilot X offers excellent integration within Visual
Studio Code, it is being developed by Microsoft and lacks
the capability to compile Xcode projects.

Copilot for Xcode presents an exciting opportunity for those
eager to see AI in action within the Xcode environment.

https://www.openapis.org
https://szia-backend.autsoft.hu/explorer/
https://github.com/intitni/CopilotForXcode

Generating Networking Layer with AI
Tools

First, let’s dive into creating the networking layer for our app.
The network layer is what allows us to get and update data
for our app. We’ll be using ChatGPT and Copilot X to speed
up this task.

Please note that I’ve omitted some of the entities for the
sake of brevity where I haven’t explicitly stated otherwise.

“Airline”: {
 “properties”: {
 “imageUrl”: {
 “type”: “string”
 },
 “name”: {
 “type”: “string”
 },
 “airlineCode”: {
 “type”: “string”
 },
 “id”: {
 “type”: “number”,
 “format”: “double”
 }

},
 “additionalProperties”: false
},
“Flight”: {
 “properties”: {
 “flightNumber”: {
 “type”: “string”
 },
 “departure”: {
 “type”: “string”
 },
 “arrival”: {
 “type”: “string”
 },
 “departureCity”: {
 “type”: “string”
 },
 “departureCode”: {
 “type”: “string”
 },
 “arrivalCity”: {
 “type”: “string”
 },
 “arrivalCode”: {
 “type”: “string”
 },
 “departureTime”: {
 “type”: “string”,
 “format”: “date-time”
 },
 “arrivalTime”: {
 “type”: “string”,
 “format”: “date-time”
 },
 “status”: {
 “type”: “string”
 },

 “checkinDeskNumber”: {
 “type”: “number”,
 “format”: “double”
 },
 “gateNumber”: {
 “type”: “number”,
 “format”: “double”
 },
 “delay”: {
 “type”: “number”,
 “format”: “double”
 },
 “comment”: {
 “type”: “string”
 },
 “id”: {
 “type”: “number”,
 “format”: “double”
 },
 “airlineId”: {
 “type”: “number”,
 “format”: “double”
 }

 },
 “required”: [
 “flightNumber”,
 “departure”,
 “arrival”,
 “departureTime”,
 “arrivalTime”,
 “status”,
 “checkinDeskNumber”,
 “gateNumber”,
 “delay”
],
 “additionalProperties”: false
}

Feeding the OpenAPI JSON to ChatGPT -
Models

I gave a snippet of the OpenAPI definition to ChatGPT which
describes the following models: Airline, Flight and asked it to
generate Swift network models for my iOS application. Using
the information from the OpenAPI definition, here is the first
version of the generated Swift models for these entities.

Airline.swift

Telling ChatGPT to generate the models again taking into
consideration the date-time format and also adding Equatable

protocol conformance, I got the following updated versions of
the models

I’m extremely satisfied with the results - the models are finely
crafted, it’s as if I had written them by hand or employed a
finely tuned custom OpenAPI generator

Feeding the OpenAPI JSON to
Copilot X - Models

Having swagger.json open in Visual Studio Code - Insiders
edition, I invoked Copilot to generate the models of the
networking layer. Copilot X generated the following code.

• Codable: Each struct is marked with the Codable protocol,
which permits both encoding to and decoding from a
serialised format like JSON.

• Optional vs. Non-Optional Properties: Properties that
are not explicitly required are declared as optional in
Swift (appending a ? to the type).

• Type Consistency: The consistency with types are maintained
(except for dates) as described in the OpenAPI document. For
instance, properties defined as “type”: “number”, “format”:
“double” were declared as Double in Swift.

• Date Handling: Properties such as departureTime and

arrivalTime are currently strings, which is not ideal for
date manipulation. This should be improved by using a
more specialised type: Date.

• Equatable: The structs are not marked as Equatable, which
is a protocol that allows us to compare two instances of
the same type for equality. This is a useful feature to have
when writing unit tests.

• Codable: Each struct is marked with the Codable protocol,
which permits both encoding to and decoding from a
serialised format like JSON.

• Hallucinogenic entity: The SziaUserRequest struct is not
even present in the OpenAPI definition.

• Optional vs. Non-Optional Properties: Properties that
are not explicitly required are NOT declared as optional.

• Missing entities: Copilot X did not generate models for
the other entities such as Airline, Flight, etc.

Having swagger.json open in Visual Studio Code - Insiders
edition, I explicitly selected the definition for the entities
I wanted to generate, I invoked Copilot X to generate the
models of the networking layer with specific instructions:

struct Airline: Codable {
 let imageUrl: String?
 let name: String?
 let airlineCode: String?
 let id: Double?
}

struct Airline: Codable, Equatable {
 let imageUrl: String?
 let name: String?
 let airlineCode: String?
 let id: Double?
}

struct Flight: Codable, Equatable {
 let flightNumber: String
 let departure: String
 let arrival: String
 let departureCity: String?
 let departureCode: String?
 let arrivalCity: String?
 let arrivalCode: String?
 let departureTime: Date
 let arrivalTime: Date
 let status: String
 let checkinDeskNumber: Double

struct Airline: Codable, Equatable {
 let id: Double?
 let name: String?
 let airlineCode: String?
 let imageUrl: String?
}

struct Flight: Codable, Equatable {
 let flightNumber: String
 let departure: String

struct SziaUserRequest: Codable {
 let username: String
 let email: String
 let id: Double
 let sziaUserId: Double
}

struct SziaUser: Codable {
 let username: String
 let email: String
 let id: Double
}

“departureTime”: {
 “type”: “string”,
 “format”: “date-time”
},

Flight.swift
struct Flight: Codable {
 let flightNumber: String
 let departure: String
 let arrival: String
 let departureCity: String?

Can you please generate Codable, Equatable Swift
struct from the selected OpenAPI model definitions

from swagger.json? Take into consideration that some
properties are optional and that format: date-time

should be a Date property.

 let departureCode: String?
 let arrivalCity: String?
 let arrivalCode: String?
 let departureTime: String
 let arrivalTime: String
 let status: String
 let checkinDeskNumber: Double
 let gateNumber: Double
 let delay: Double
 let comment: String?
 let id: Double?
 let airlineId: Double?
}

 let gateNumber: Double
 let delay: Double
 let comment: String?
 let id: Double?
 let airlineId: Double?
}

17 18

...
 do {
 let decoder = JSONDecoder()
 let dateFormatter = DateFormatter()
 dateFormatter.dateFormat = “yyyy-MM-
dd’T’HH:mm:ss.SSSZ”
 decoder.dateDecodingStrategy = .formatted(-
dateFormatter)
 let flights = try decoder.decode([Flight].self, from:
data)
 DispatchQueue.main.async {
 completion(.success(flights))
 }

 } catch {
 completion(.failure(error))
 }

...

• Base URL: The generated code has a base URL property,
which is a good practice, I just had to add it by hand
pointing to the SZIA server.

• Error Handling: The generated code has a decent error
handling. It checks for invalid URL, absence of data,
and decoding errors, which are essential for stability. It
doesn’t account for specific HTTP status codes or domain-
specific errors, but these aren’t included in the OpenAPI
specification either. We don’t usually use NSErrors,
because we have Swift’s Error protocol to conform to and
create meaningful errors.

• Multithreading: The network request is made
asynchronously using `URLSession.shared.dataTask
(with:completion:)``. However, the completion handler is
not explicitly dispatched to any queue which means it will
run in the background thread. In most cases, you would
want the completion handler to be executed on the main
thread if it involves UI updates.

• Working code?: The generated code is not working code.
It results in a DecodingError for departureTime... (This
is because this assignment doesn’t respect ISO8601
standard for date-time format on purpose as a gotcha for
candidates.)

Giving the Flight object and the error message to ChatGPT, it
generated a working fix and also dispatched the result to the
main thread (Except in case of failure).

• Modern Swift Concurrency: The generated code is using
the new async/await APIs and it’s also handling errors as
I’ve requested.

• Working code?: The generated code is not working code.
It results in the same DecodingError for departureTime.
ChatGPT didn’t remember the fix it generated for the
previous code.

However, by giving the underlying decoding error to ChatGPT
again, it generated a working fix.

• Base URL: The generated code doesn’t use a base URL
property. It’s not a big deal here as the URL is hardcoded.
However, it’s a good practice to have a base URL property
in case of dynamic URLs.

import Foundation

enum FlightAPIError: Error {
 case invalidURL
 case failedRequest
 case decodingError
}

struct FlightAPI {

 let baseURL: String

 func fetchFlights(filter: String? = nil) async throws ->

[Flight] {
 var urlComponents = URLComponents(string:
baseURL + “/Flights”)
 if let filter = filter {
 urlComponents?.queryItems = [URLQuery-

Item(name: “filter”, value: filter)]
 }

 guard let url = urlComponents?.url else {
 throw FlightAPIError.invalidURL
 }

 let (data, response) = try await URLSession.shared.
data(from: url)

 guard let httpResponse = response as? HTTPURL-
Response, httpResponse.statusCode == 200 else {
 throw FlightAPIError.failedRequest
 }

 do {
 let flights = try JSONDecoder().decode([Flight].
self, from: data)
 return flights
 } catch {
 throw FlightAPIError.decodingError
 }

 }

}

guard let url = URL(string: “https://example.com/api/
Flight”) else {
 fatalError(“Invalid URL”)
}

var request = URLRequest(url: url)
request.addValue(“application/json”, forHTTPHeader-
Field: “Content-Type”)

let task = URLSession.shared.dataTask(with: request) {
data, response, error in
 guard let data = data, error == nil else {
 print(“Error: \(error?.localizedDescription ?? “Un-

known error”)”)
 return
 }

 do {
 let flights = try JSONDecoder().decode([Flight].self,
from: data)
 print(“Flights: \(flights)”)
 } catch {
 print(“Error decoding response: \(error.localizedDe-

scription)”)
 }

}

task.resume()

I’m quite pleased with how the AI-generated code performed
in handling the network request. But, I’m curious to explore if
we can further refine and modernise this implementation by
leveraging newer APIs such as Swift’s Combine framework or
async/await, which can provide more elegant and streamlined
solutions compared to the traditional completion handlers.

ChatGPT handled the generation of network requests com-

mendably, demonstrating an impressive capacity to adapt to
requirements such as custom date formatting.

Feeding the OpenAPI JSON to Copilot X - Re-
quest/Response

I’ve also tried to feed the OpenAPI JSON to Copilot X to see
how it would perform. I’ve used the same OpenAPI JSON
file as before without giving specific instructions about how
I want the networking code generated. Copilot X gave me
the following code

...
 do {
 let decoder = JSONDecoder()

 let arrival: String
 let departureCity: String?
 let departureCode: String?
 let arrivalCity: String?
 let arrivalCode: String?
 let departureTime: Date
 let arrivalTime: Date
 let status: String
 let checkinDeskNumber: Double
 let gateNumber: Double
 let delay: Double
 let comment: String?
 let id: Double?
 let airlineId: Double?
}

This time I’ve got similar output to ChatGPT and Copilot X has
generated the models for all the entities.

Feeding the OpenAPI JSON to ChatGPT - Request/
Response

I’ve told ChatGPT to generate the networking code for the GET

`Flights`` endpoint without any other specific instructions, I’ve
just given it the OpenAPI specification of that endpoint. Here
is the result.

import Foundation

struct Flight: Decodable {
 // Assuming there are properties defined under ‘#/
definitions/Flight’
}

class FlightAPI {
 let baseURL = “https://api.imaginaryairport.com”

 func getFlights(filter: String?, completion: @escaping
(Result<[Flight], Error>) -> Void) {
 var urlString = “\(baseURL)/Flights”

 if let filter = filter {
 urlString.append(“?filter=\(filter.addingPercen-

tEncoding(withAllowedCharacters: .urlHostAllowed) ??
“”)”)
 }

 guard let url = URL(string: urlString) else {
 completion(.failure(NSError(domain: “”, code: -1,
userInfo: [NSLocalizedDescriptionKey: “Invalid URL”])))
 return
 }

 URLSession.shared.dataTask(with: url) { data, re-

sponse, error in
 if let error = error {
 completion(.failure(error))
 return
 }

 guard let data = data else {
 completion(.failure(NSError(domain: “”, code:
-2, userInfo: [NSLocalizedDescriptionKey: “No data
received”])))

 return
 }

 do {
 let flights = try JSONDecoder().decode([-
Flight].self, from: data)
 completion(.success(flights))
 } catch {
 completion(.failure(error))
 }

 }.resume()
 }

}

 let dateFormatter = DateFormatter()
 dateFormatter.dateFormat = “yyyy-MM-dd’T’HH:m-

m:ss.SSSZ”
 dateFormatter.timeZone = TimeZone(secondsFromG-

MT: 0)
 decoder.dateDecodingStrategy = .formatted(dateFor-
matter)
 let flights = try decoder.decode([Flight].self, from:
data)
 return flights
 } catch {
 print(“Decoding error: \(error)”)
 throw FlightAPIError.decodingError
 }

...

19 20

The generated code is pretty good, but it’s not perfect and
doesn’t even compile. Let’s go through the issues one by one.

- Flight doesn’t conform to Identifiable protocol, so the list
doesn’t know how to identify each item. The fix is pretty easy,
either make Flight Identifiable or make it Hashable and pass
the \.self`` key path to the list’s init for the id parameter. I’ve
chosen the latter not wanting to mess with the Flight` struct.

Apart from architectural improvements, I wanted to make
two changes to the generated code:
• Don’t create a DateFormatter, just use Text’s date for-

matter initialiser.
• Add some images from SF Symbols to make it more vis-

ually appealing.

• flight.delay is not optional, so the if let check is
unnecessary. Similarly it’s easy to remedy, just remove
the unwrapping.

• fetchFlights is defined in FlightAPI. I consider it my fault
as I haven’t told ChatGPT about it. The fix is easy, just
instantiate and call FlightAPI.fetchFlights().

import SwiftUI

struct FlightsListView: View {
 @State private var flights: [Flight] = []
 @State private var errorMessage: String? = nil

 private static let dateFormatter: DateFormatter = {
 let formatter = DateFormatter()
 formatter.dateStyle = .short
 formatter.timeStyle = .short
 return formatter
 }()

 var body: some View {
 NavigationView {

List(flights, id: \.self) { flight in
 ...
}

if flight.delay > 0 {
 Text(“Delayed by \(flight.delay) minutes”)
 .foregroundColor(.red)
}

 VStack {
 if let errorMessage = errorMessage {
 Text(errorMessage)
 .foregroundColor(.red)
 }

 List(flights) { flight in
 VStack(alignment: .leading) {
 Text(flight.flightNumber)
 .font(.headline)
 Text(“\(flight.departure) - \(flight.arriv-

al)”)
 .font(.subheadline)
 HStack {
 Text(“Departure:”)
 Text(Self.dateFormatter.string(from:
flight.departureTime))
 }

 HStack {
 Text(“Arrival:”)
 Text(Self.dateFormatter.string(from:
flight.arrivalTime))
 }

 Text(“Status: \(flight.status)”)
 if let delay = flight.delay, delay > 0 {
 Text(“Delayed by \(delay) minutes”)
 .foregroundColor(.red)
 }

 if let comment = flight.comment {
 Text(comment)
 .font(.caption)
 }

 }

 }

 }

 .navigationTitle(“Flights”)
 }

 .task {
 do {
 flights = try await fetchFlights()
 } catch {
 errorMessage = “Failed to fetch flights: \
(error.localizedDescription)”
 }

 }

 }

}

• Error Handling: The generated code does an ok job for
error handling. In case of an invalid URL it crashes the
app. This is fine here as this would be a programming
error. Other times with dynamic urls, crashing the app is
too extreme.

• Multithreading: The network request is made
asynchronously using URLSession.shared.dataTask
(with:completion:). However, the completion handler is
not explicitly dispatched to any queue which means it will
run in the background thread. In most cases, you would
want the completion handler to be executed on the main
thread if it involves UI updates.

• Filtering: The generated code doesn’t support filtering.
• Working code?: The generated code is not working code.

It results in a DecodingError for departureTime.

Giving the Flight object and the error message to Copilot X,
it also generated a working fix. It is worth noting that I had
to explicitly say that the date format is not ISO8601 to get
the fix.

let decoder = JSONDecoder()
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = “yyyy-MM-dd’T’HH:m-

m:ss.SSS’Z’”
dateFormatter.timeZone = TimeZone(secondsFromG-

MT: 0)
decoder.dateDecodingStrategy = .formatted(dateFor-
matter)

do {
 let flights = try decoder.decode([Flight].self, from:
data)
 print(“Flights: \(flights)”)
} catch {
 print(“Error decoding response: \(error.localizedDe-

scription)”)
}

I’ve also tried to feed Copilot X more specific instructions
about how I want the networking code generated. I’ve asked
it to use the new async/await APIs and handle errors. Copilot
X gave me the following code:

enum FlightError: Error {
 case invalidURL
 case decodingError
}

func fetchFlights() async throws -> [Flight] {
 guard let url = URL(string: “https://example.com/api/
Flight”) else {
 throw FlightError.invalidURL
 }

 var request = URLRequest(url: url)
 request.addValue(“application/json”, forHTTPHead-

erField: “Content-Type”)

 let (data, response) = try await URLSession.shared.
data(for: request)

 guard let httpResponse = response as? HTTPURL-
Response, httpResponse.statusCode == 200 else {

 throw FlightError.invalidURL
 }

 do {
 let flights = try JSONDecoder().decode([Flight].
self, from: data)
 return flights
 } catch {
 throw FlightError.decodingError
 }

}

• Modern Swift Concurrency: Pretty good! The generated
code is using the new async/await APIs and it’s also
handling errors like I’ve requested.

• Working code?: The generated code is not working code.
It results in a DecodingError for departureTime. It didn’t
remember the date formatter from the previous example.

Giving the underlying decoding error to Copilot X, it
generated a working fix.

I’m still overall impressed with Copilot X; when provided with
specific instructions, it delivers targeted and quality results.

Developing User Interface with AI Tools
Next, we’ll walk through the process of using AI tools, to
develop the user interface of our application. Our focus will
be on creating a SwiftUI List that displays flights, using the
previously created Flight struct and the related network
fetching code.

For our SwiftUI List, the requirements are:

• A simple and visually appealing list.
• Each list item should display data about the specific flight.
• The list should be scrollable and populate dynamically

based on the data fetched from the network call.
• Appropriate formatting for the date and time.

ChatGPT

I’ve told ChatGPT about my Flight struct and the (`async
throws``) network fetching code. I’ve also told it that I want
to use SwiftUI to display a list of these Flights. Here’s what
it generated:

21 22

struct FlightsListView: View {
 @State private var flights: [Flight] = []
 @State private var errorMessage: String? = nil

 var body: some View {
 NavigationView {
 VStack {
 if let errorMessage = errorMessage {
 Text(errorMessage)
 .foregroundColor(.red)
 .padding()
 }

 List(flights, id: \.self) { flight in
 HStack(alignment: .top) {
 VStack(alignment: .leading) {
 HStack {
 Image(systemName: “airplane”)
 .foregroundColor(.blue)
 Text(flight.flightNumber)
 .font(.headline)
 }

 Text(“\(flight.departure) - \(flight.arrival)”)
 .font(.subheadline)
 HStack {
 Image(systemName: “clock.arrow.circlepath”)
 .foregroundColor(.gray)
 Text(“Departure:”)
 Text(flight.departureTime, format: .dateTime)
 }

 HStack {
 Image(systemName: “clock.arrow.2.circle-

path”)
 .foregroundColor(.gray)
 Text(“Arrival:”)
 Text(flight.arrivalTime, format: .dateTime)
 }

 HStack {
 Image(systemName: “info.circle”)
 .foregroundColor(.gray)
 Text(“Status: \(flight.status)”)
 }

 if flight.delay > 0 {
 HStack {
 Image(systemName: “exclamationmark.
triangle”)
 .foregroundColor(.red)
 Text(“Delayed by \(flight.delay) minutes”)
 }

 }

 if let comment = flight.comment {
 HStack {
 Image(systemName: “bubble.right”)
 .foregroundColor(.gray)
 Text(comment)
 .font(.caption)
 }

 }

 }

 }

 .padding(.vertical)
 }

 }

import SwiftUI

struct FlightDetailView: View {
 let flight: Flight

 private static let dateFormatter: DateFormatter = {
 let formatter = DateFormatter()
 formatter.dateStyle = .short
 formatter.timeStyle = .short
 return formatter
 }()

 var body: some View {
 List {
 Section(header: Text(“Flight Information”)) {
 HStack {
 Image(systemName: “airplane”)
 Text(flight.flightNumber)
 .font(.headline)
 }

 HStack {
 Image(systemName: “location”)
 Text(“\(flight.departure) - \(flight.arrival)”)
 }

 HStack {
 Image(systemName: “clock.arrow.circlepath”)
 Text(“Departure: \(flight.departureTime, format:
.dateTime)”)
 }

 HStack {
 Image(systemName: “clock.arrow.2.circlepath”)
 Text(“Arrival: \(flight.arrivalTime, format: .date-

Time)”)
 }

 }

 Section(header: Text(“Additional Information”)) {
 HStack {
 Image(systemName: “info.circle”)
 Text(“Status: \(flight.status)”)
 }

 if flight.delay > 0 {
 HStack {
 Image(systemName: “exclamationmark.trian-

gle”)
 Text(“Delayed by \(flight.delay) minutes”)
 }

 }

 if let comment = flight.comment {
 HStack {
 Image(systemName: “bubble.right”)
 Text(comment)
 }

 }

 HStack {
 Image(systemName: “doc.text.magnifyingglass”)
 Text(“Check-in Desk: \(flight.checkinDeskNum-

ber)”)
 }

 .navigationTitle(“Flights”)
 }

 .task {
 do {
 flights = try await FlightAPI().fetchFlights()
 } catch {
 errorMessage = “Failed to fetch flights: \(error.
localizedDescription)”
 }

 }

 }

}

The only minor issue is the incorrect usage of the Text
initialiser, but it was only a syntax error.

Finally to add a cherry on top, I asked ChatGPT to generate
a FlightDetailView with all the parameters it can display. It
provided me with a nice view with the minor issues of optional
handling and date formatting that we’ve already seen.

After hooking it up to the navigation link, we have a simple,
but functional app!

 HStack {
 Image(systemName: “arrow.turn.down.right”)
 Text(“Gate Number: \(flight.gateNumber)”)
 }

 if let departureCity = flight.departureCity {
 HStack {
 Image(systemName: “building.columns”)
 Text(“Departure City: \(departureCity)”)
 }

 }

 if let arrivalCity = flight.arrivalCity {
 HStack {
 Image(systemName: “building.columns.fill”)
 Text(“Arrival City: \(arrivalCity)”)
 }

 }

 if let departureCode = flight.departureCode {
 HStack {
 Image(systemName: “barcode”)
 Text(“Departure Code: \(departureCode)”)
 }

 }

 if let arrivalCode = flight.arrivalCode {
 HStack {
 Image(systemName: “barcode.viewfinder”)
 Text(“Arrival Code: \(arrivalCode)”)
 }

 }

 }

 }

 .listStyle(.insetGrouped)
 .navigationTitle(“Flight Details”)
 }

}

NavigationLink(destination: FlightDetailView(flight:
flight)) {
...
}

23 24

Copilot X

Learning from my mistake from the model generation when
trying out Copilot X, I’ve decided to be specific immediately:

The generated code is mostly fine, but has pretty much the
same issues as ChatGPT’s code. I had to modify List’s init to

provide an id and also call the fetchFlights correctly.

Playing around with Copilot X, I wanted to achieve a
similar result as with ChatGPT and show the departure and
arrival times, format them using Text’s date formatter, add
contextually relevant SF Symbol images to the Text’s and

create the detail view as well
I have an array of Flight objects: “struct Flight:

Codable, Equatable { let flightNumber: String let
departure: String let arrival: String let departureCity:

String? let departureCode: String? let arrivalCity:
String? let arrivalCode: String? let departureTime:

Date let arrivalTime: Date let status: String let
checkinDeskNumber: Double let gateNumber: Double

let delay: Double let comment: String? let id: Double? let
airlineId: Double? }” I would like you to create a visually
pleasing SwiftUI List. The Flight object doesn’t conform

to Identifiable yet and I also want you to use the modern
.task API as my fetchFlights API is async.

import SwiftUI

struct FlightsListView: View {
 @State private var flights: [Flight] = []

 var body: some View {
 List(flights) { flight in
 VStack(alignment: .leading) {
 Text(flight.flightNumber)
 .font(.headline)
 Text(“\(flight.departure) - \(flight.arrival)”)
 .font(.subheadline)
 Text(flight.status)
 .font(.subheadline)
 }

 }

 .task {
 do {
 let fetchedFlights = try await fetchFlights()
 self.flights = fetchedFlights
 } catch {
 print(“Error fetching flights: \(error.localized-

Description)”)
 }

 }

 }

 func fetchFlights() async throws -> [Flight] {
 // Your async fetchFlights implementation here
 }

}

struct FlightListView_Previews: PreviewProvider {
 static var previews: some View {
 FlightsListView()
 }

}

import SwiftUI

struct FlightsListView: View {
 @State private var flights: [Flight] = []

 var body: some View {
 NavigationView {
 List(flights, id: \.self) { flight in
 NavigationLink {
 FlightDetailView(flight: flight)

 } label: {
 HStack {
 Image(systemName: “airplane”)
 .foregroundColor(.blue)
 VStack(alignment: .leading) {
 HStack {
 Image(systemName: “number”)
 .foregroundColor(.gray)
 Text(flight.flightNumber)
 .font(.headline)
 }

 HStack {
 Image(systemName: “arrow.up.right”)
 .foregroundColor(.gray)
 Text(“\(flight.departure) - \(flight.arriv-

al)”)
 .font(.subheadline)
 }

 HStack {
 Image(systemName: “clock”)
 .foregroundColor(.gray)
 Text(“Departure: \(Text(flight.depar-
tureTime, style: .time))”)
 .font(.subheadline)
 }

 HStack {
 Image(systemName: “clock.fill”)
 .foregroundColor(.gray)
 Text(“Arrival: \(Text(flight.arrivalTime,
style: .time))”)
 .font(.subheadline)
 }

 HStack {
 Image(systemName: “info.circle”)
 .foregroundColor(.gray)
 Text(flight.status)
 .font(.subheadline)
 }

 }

 }

 }

 }

 .task {
 do {
 let fetchedFlights = try await FlightAPI().
fetchFlights()
 self.flights = fetchedFlights
 } catch {
 print(“Error fetching flights: \(error.local-
izedDescription)”)
 }

 }

 }

 }

}

struct FlightListView_Previews: PreviewProvider {
 static var previews: some View {
 FlightsListView()
 }

}

25 26

Copilot X seems to be performing slightly worse than ChatGPT, but it’s still pretty impressive.

Before Giving Too Many Points to ChatGPT

Also, before declaring ChatGPT the winner, I wanted to try
out a few more things. I wanted to see how it would perform
with more complex instructions.

Can you add a little blue shadow to the top trailing
corner of a list item?

Nearly but you are now not supporting dark mode, it’s
not readable.

27 28

Change the list style to plain and only add shadow to the
whole cell, not to every text.

Can you please add pull-to-refresh functionality?

As of my last knowledge update in September
2021, SwiftUI did not have a built-in pull-to-refresh
feature. However, you can use a `UIRefreshControl`
with a `UIScrollView` by wrapping it in a

`UIViewRepresentable`.

Let’s create a custom SwiftUI view named
`RefreshableScrollView` which will integrate the
UIKit’s `UIRefreshControl` into a SwiftUI view:
...

SwiftUI does have a refreshable modifier on List from iOS
15, but still kudos to ChatGPT by solving the problem in a
different way.

I would like to use MVVM, can you please create a
ViewModel for my FlightsListView?

import Foundation

class FlightsViewModel: ObservableObject {
 @Published var flights: [Flight] = []
 @Published var errorMessage: String? = nil

 func fetchFlights() async {
 do {
 flights = try await FlightAPI().fetchFlights()
 } catch {
 errorMessage = “Failed to fetch flights: \(error.
localizedDescription)”
 }

 }

}

struct FlightsListView: View {
 @StateObject private var viewModel = FlightsView-
Model()

 var body: some View {
 NavigationView {
 VStack {
 if let errorMessage = viewModel.errorMes-

sage {
 Text(errorMessage)
 .foregroundColor(.red)
 .padding()
 }

 RefreshableScrollView(onRefresh: { await
viewModel.fetchFlights() }) {
 ForEach(viewModel.flights, id: \.self) {
flight in
 NavigationLink(destination: FlightDe-
tailView(flight: flight)) {
 FlightCell(flight: flight)
 }

 }

 }

 .padding(.horizontal)
 }

 .navigationTitle(“Flights”)
 }

 .task {
 await viewModel.fetchFlights()
 }

 }

}

Where is FlightCell?

import SwiftUI

struct FlightCell: View {
 var flight: Flight

 var body: some View {
 VStack(alignment: .leading) {
 HStack {
 Image(systemName: “airplane”)
 .foregroundColor(.blue)
 Text(flight.flightNumber)
 .font(.headline)
 }

 ...
 }

 .padding()
 .background(Color.secondarySystemBackground)
 .clipShape(RoundedRectangle(cornerRadius: 10))
 .shadow(color: .blue, radius: 5, x: -5, y: -5)
 }

}

Conclusion

Both ChatGPT 4 and Copilot X are formidable allies for iOS
developers in their quest to augment the development process.

ChatGPT 4 is the victor in generating higher-quality results
across an array of tasks, albeit at a higher cost and with some
usage constraints.

Copilot X, though trailing slightly in performance,
compensates with a seamless IDE integration, making it
more convenient for the day-to-day workflow.

Since both have their own set of advantages, it’s difficult
to crown an indisputable champion. The decision hinges
on individual priorities - whether one values quality and
sophistication or integration and cost-effectiveness.

Context is Limited

When using ChatGPT or Copilot X, we need to recognise the
limitations in their memory and input capacities. ChatGPT
can handle 4096 tokens, while Copilot X is confined to 2048.
(I’ve asked them to provide this data.) This necessitates
conciseness and precision when dealing with extensive
documentation or large-scale enterprise projects.

However, the rapidly advancing AI landscape instills
confidence that these token constraints will likely experience
significant expansions in the near future.

Prompt Engineering and Expertise Matters

ChatGPT and Copilot X’s output quality is substantially
enhanced through meticulous, prompt engineering and
contextualisation.

While they can generate code incorporating modern Swift
Concurrency and Swift errors, these aren’t their defaults due
to the abundance of completion handler solutions in their
training data.

This highlights the importance of domain expertise to steer
the AI tools towards generating state-of-the-art code. These
tools can be instrumental in accelerating the development
process when wielded by skilled hands.

Generating Network Layer

We can clearly see the abilities of both ChatGPT and Copilot
X in sculpting the network layer’s models, with ChatGPT
taking an early lead.

The models generated by Copilot X caught up once given
more specific directives. The learning point here is not to
presume Copilot X can rely solely on open files; it requires
some guidance.

Though traditional OpenAPI generators remain unchallenged
in speed and consistency, ChatGPT’s ability to offer custom
solutions and troubleshoot issues offers a versatile dynamism
that is valuable. Both AI tools prove adept at refining
.mustache files for OpenAPI generators.

ChatGPT 4 also demonstrated finesse in generating
networking calls but needed some fine-tuning. Copilot X,
though requiring more context and iterations, capitalised on
its IDE integration for generating networking calls.

In summary, while ChatGPT 4 had a slight edge in code
accuracy, Copilot X was more convenient and responsive.
Both significantly accelerated the development process,
albeit with the need for some manual refinement.

UI is Still a Mostly Manual Process

ChatGPT 4 edges ahead of Copilot X in generating UI code,
but is contingent on the provision of unambiguous directives.

Both tools exhibited occasional syntactical slips and a limited
acquaintance with cutting-edge SwiftUI features.

Copilot X was noted for its imaginative tendencies
(hallucination), conjuring non-existent UI elements. Though
helpful in expediting the code-writing process, neither tool
could replicate the finesse of UI designed by human experts.

AI systems have yet to master the nuances of interpreting
and executing complex designs. Thus, ChatGPT and Copilot
X are best used as supplementary resources that complement
human expertise rather than supplant it.

What Will Apple Do?

With Microsoft at the forefront with OpenAI-backed tools,
Google close on its heels with Bard, and Meta also delving
into the domain, my eyes are now on Apple.

So far, Apple has remained tight-lipped, but the market
dynamics strongly suggest that Apple might not be far behind
in unveiling its own offering.

29 30

31 32

While the recent WWDC was mostly bereft of announcements
on this front, the tech community remains on tenterhooks
for the next edition. Apple, known for its innovation, might
just bring something groundbreaking to the table.

Bringing it All Together

In the realm of iOS development, AI tools like ChatGPT and
Copilot X are carving out powerful accelerants that can
streamline various aspects of the development lifecycle.

While ChatGPT 4 emerges as the forerunner in generating
sophisticated code, Copilot X’s integration with IDEs makes
it a practical tool for daily use (if you don’t mind switching
back and forth between Visual Studio Code and Xcode).

However, it is essential to recognise and navigate the
limitations of these AI systems, especially in terms of token
capacity and the necessity for precise prompts.

As of now, when it comes to UI design, human creativity
and expertise hold sway, as AI-generated code still lacks the
finesse required for intricate designs. But, for generating
network layers and other backend functionalities, AI tools
are proving to be valuable.

It is essential for developers to remain abreast of the evolving
AI landscape. The token limitations that are pertinent
today may not be significant constraints tomorrow, and AI-
generated code may soon rival human-generated code in
sophistication.

Finally, in this highly competitive tech ecosystem, Apple’s
entry into the AI tool space is eagerly anticipated. While
ChatGPT and Copilot X are excellent tools in their own
right, Apple’s innovation could redefine the standards and
expectations.

In conclusion, integrating AI tools into (iOS) development is
not just a fad, but an evolution that is here to stay.

However, the use of AI does not obviate the need for human
expertise. Rather, it’s the synergy of human intelligence and
AI capabilities that will drive the future of (iOS) development.
As developers, continually adapting and learning to harness
these tools effectively is the key to staying relevant and
successful in this ever-evolving landscape.

Look out for Edition 2 of
the New Beings AI eBook

Coming up:
AutoGPT
Copilot
SuperAGI
Tabnine

Copyright Zenitech 2023. All rights reserved

